
Understanding Transformers:
A step-by-step hand simulation
to translate a sentence
from English to Hindi

- How information changes through each layer of a basic
transformer.

- Assumptions: weights are already optimized, so no
backpropagation required

let’s 1 0 0 0

to 0 1 0 0

go 0 0 1 0

<EOS> 0 0 0 1

English vocabulary = 𝐼4 = 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1.87 0.09

-1.45 1.50

-0.78 0.27

2.21 -0.64

𝐼4.

1.87 0.09

-1.45 1.50

-0.78 0.27

2.21 -0.64

=

let’s

to

go

<EOS>

Word embedding:

Sentence = [let’s, go] = 1.87 0.09

-0.78 0.27

let’s

go
- Weights are optimised using
backpropagation
- The process of optimising the
weights is called training

But position matters!

[do , I , like , this]
[I , do , like , this] different meanings, so just embedding words as vectors won’t work

 we need to somehow embed positions

<do, 0> ; <I, 1> ; <like, 2> ; <this, 3>

<I, 0> ; <do, 1>

so that the same words could be embedded differently if their position changes their meaning

0 = <0, 1>
1 = <-0.9, 0.4>

Positional embedding:

X = sentence + embedded positions
 = +

 X =

1.87 0.09

-0.78 0.27

let’s

go

0 1

-0.9 0.4

0

1

1.87 1.09

-1.68 0.67

<let’s, 0>

<go, 1>

Self-attention keeps track
of the relationships among
words

The stew was cooked on the stove, and it tasted good

Self-attention:

X . W_q = Q : query : another way to represent X : what everyone is looking for

X . W_k = K : key : yet another way to represent X : what everyone can offer

1.87 1.09

-1.68 0.67

1.87 1.09

-1.68 0.67

1.1 0.6

-2.8 2.4

-0.995 3.74

-3.724 0.6

-1.7 0.5

-1.4 0.9

-4.71 1.92

1.92 -0.24

X W_q Q

 . =

X W_k K

 . =

1. Encoder

Self-attention:

Compare Q and K : Q . K^T why K^T?: if Q(4x2) and K(4x2) then Q and K should be
 multipliable

Q . K^T = 11.84 -2.79

18.67 -7.28

softmax(Q . K^T) = = (approx.)9.9e-1 1.05e-7

9.9e-1 2.01e-9

1 0

1 0

Self-attention:

X . W_v = V : value : yet another way to represent X : what everyone is worth

1.87 1.09

-1.68 0.67

1.5 -1.0

-0.3 -0.2

2.478 -2.088

-2.631 1.606

X W_v V

 . =

self_attention = softmax(Q . K^T) . V

 = . =
1 0

1 0

2.478 -2.088

-2.631 1.606

2.48 -2.08

2.48 -2.08

This could possibly suggest
a one-word-translation
from English to Hindi

The weights used to calculate self attention are the same for “lets”
and “go”.

No matter how many words are input to the transformer, we reuse
the same sets of weights for each word.

We can hence calculate all Q, K and V for all words at the same
time. Was not possible with RNNs.

Residual connection:

E = self_attention + X

 = + =2.48 -2.08

2.48 -2.08

1.87 1.09

-1.68 0.67

4.35 -0.998

0.798 -1.418

encoder output

Residual connection:

E = self_attention + X

 = + =2.48 -2.08

2.48 -2.08

1.87 1.09

-1.68 0.67

4.35 -0.998

0.798 -1.418

encoder output

Residual connections help in training:
SA layer can establish a relationship with
input words without having to preserve all
the functions that led to it.

2. Decoder

इधर (idhar) 1 0 0 0

चलो (chalo) 0 1 0 0

हम (hum) 0 0 1 0

<EOS> 0 0 0 1

Hindi vocabulary = 𝐼4 = 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

-2.27 2.54

0.04 1.97

-0.77 -0.75

2.70 -1.34

𝐼4. =

इधर (idhar)

चलो (chalo)

हम (hum)

<EOS>

Word embedding: -2.27 2.54

0.04 1.97

-0.77 -0.75

2.70 -1.34

The decoder generates text iteratively, i.e., it predicts the next word based on the previous word(s). So unlike the
encoder, where the entire sentence was processed together ([let’s, go]), here we will process one word at a time.

We assume the first word to be <EOS> in Hindi (or any target language), since that would be the last word
of the (imaginary) previous sentence, preceding the first word of the current sentence.

-2.27 2.54

0.04 1.97

-0.77 -0.75

2.70 -1.34

इधर (idhar)

चलो (chalo)

हम (hum)

<EOS>

<EOS> = < 2.70, -1.34 >
<EOS, 0> = <EOS> + <0> = < 2.70, -1.34 > + < 0, 1 >
 = < 2.70, -0.34 >

recall positional embedding? we use the same
embeddings here.

0 1

-0.9 0.4

0

1

Decoder self-attention:

0.4 0.4

-0.3 0.1

0.4 -0.7

-0.4 -0.3

-1.1 -0.7

-0.4 1.3
W_q,sa = W_k,sa = W_v,sa =

<EOS, 0> . W_q,sa = Q_sa
<EOS, 0> . W_k,sa = K_sa
<EOS, 0> . W_v,sa = V_sa

decoder_self_attention = softmax(Q_sa . K_sa^T) . V_sa

 = < -2.834, -2.332 >

Residual network:

Y_sa = decoder_self_attention + <EOS, 0>

 = < -2.834, -2.332 > + < 2.70, -0.34 >

 = < -0.134, -2.672 >

Decoder cross-attention:

We have now learnt the meaning of the current word w.r.t the other words in Hindi (through self attention)
But what does the current word mean w.r.t the English that was learnt by the encoder?

encoder output
K , V

decoder self-
attention
output

Y_saQ

Decoder cross-attention:

1.5 -0.3

0.3 -1.0

-1.1 0.3

-0.3 -0.8

1.1 0.6

-1.2 -0.5
W_q,ca = W_k,ca = W_v,ca =

Query from decoder self attention output:

Y_sa . W_q,ca = Q_ca = < -1.0026, 2.7122 >

Key and Value from encoder output:

E . W_k,ca = K_ca =

E . W_v,ca = V_ca =

-4.48 2.10

-0.45 1.37

5.98 3.11

2.58 1.19

decoder_cross_attention = softmax(Q_ca . K_ca^T). V_ca = < 5.97, 3.10 >

4.35 -0.998

0.798 -1.418

Recall E, the encoder output?

Residual network:

Y_ca = decoder_cross_attention + Y_sa

 = < 5.97, 3.10 > + < -0.134, -2.672 >

 = < 5.84, 0.43 >

Fully-connected layer

-0.6 0.8 -0.1 -1.0

-2.0 -0.9 -1.1 1.6
W = bias = < -0.6, 1.4, -2.5, 0.5 >

pred = Y_ca . W + bias

 = < -4.97 , 5.68 , -3.56 , -4.65 >

next_word = softmax(pred)

 = < 2.4e-5 , 9.99e-1, 9.7e-5, 3.3e-5 > = < 0, 1, 0, 0 > (approx.)

चलो (chalo)

Now, चलो (chalo) enters the decoder, and the same decoder operations are repeated.

Next word predicted is <EOS>
Translation finished.

	Slide 1: Understanding Transformers: A step-by-step hand simulation to translate a sentence from English to Hindi
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

