
Understanding Transformers:
A step-by-step hand simulation
to translate a sentence
from English to Hindi



- How information changes through each layer of a basic 
transformer.

- Assumptions: weights are already optimized, so no 
backpropagation required



let’s 1 0 0 0

to 0 1 0 0

go 0 0 1 0

<EOS> 0 0 0 1

English vocabulary   = 𝐼4 = 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1.87 0.09

-1.45 1.50

-0.78 0.27

2.21 -0.64

𝐼4.

1.87 0.09

-1.45 1.50

-0.78 0.27

2.21 -0.64

=

let’s

to

go

<EOS>

Word embedding: 

Sentence  =      [let’s,   go]     =  1.87 0.09

-0.78 0.27

let’s

go
- Weights are optimised using 
backpropagation
- The process of optimising the 
weights is called training



But position matters! 

[ do , I , like , this ]
[ I , do , like , this ] different meanings, so just embedding words as vectors won’t work

       we need to somehow embed positions

<do, 0> ;  <I, 1> ; <like, 2> ; <this, 3>

<I, 0> ; <do, 1>

so that the same words could be embedded differently if their position changes their meaning



0      =       <0, 1>
1      =       <-0.9, 0.4> 

Positional embedding:

X           =        sentence                                +           embedded positions
                         =                                                            +

           X            = 

1.87 0.09

-0.78 0.27

let’s

go

0 1

-0.9 0.4

0

1

1.87 1.09

-1.68 0.67

<let’s, 0>

<go, 1>





Self-attention keeps track
of the relationships among
words



The stew was cooked on the stove, and it tasted good



Self-attention:

X . W_q = Q       :      query           :      another way to represent X           :       what everyone is looking for

X . W_k = K       :        key               :     yet another way to represent X     :       what everyone can offer

1.87 1.09

-1.68 0.67

1.87 1.09

-1.68 0.67

1.1 0.6

-2.8 2.4

-0.995 3.74

-3.724 0.6

-1.7 0.5

-1.4 0.9

-4.71 1.92

1.92 -0.24

X                                          W_q                                                    Q

                                  .                                                  =

X                                          W_k                                                     K

                                  .                                                  =

1. Encoder 



Self-attention:

Compare Q and K       :          Q . K^T                                          why K^T?: if Q(4x2) and K(4x2) then Q and K should be
                   multipliable

Q . K^T               =           11.84 -2.79

18.67 -7.28

softmax(Q . K^T)          =                                                                      =                          (approx.)9.9e-1 1.05e-7

9.9e-1 2.01e-9

1 0

1 0



Self-attention:

X . W_v = V       :      value           :      yet another way to represent X           :       what everyone is worth

1.87 1.09

-1.68 0.67

1.5 -1.0

-0.3 -0.2

2.478 -2.088

-2.631 1.606

X                                          W_v                                                    V

                                  .                                                  =

self_attention = softmax(Q . K^T) . V

                               =                            .                                                          =
1 0

1 0

2.478 -2.088

-2.631 1.606

2.48 -2.08

2.48 -2.08

This could possibly suggest
a one-word-translation
from English to Hindi



The weights used to calculate self attention are the same for “lets” 
and “go”.

No matter how many words are input to the transformer, we reuse 
the same sets of weights for each word.

We can hence calculate all Q, K and V for all words at the same 
time. Was not possible with RNNs.



Residual connection:

E    =     self_attention                  +          X

        =                                                   +                                                         =2.48 -2.08

2.48 -2.08

1.87 1.09

-1.68 0.67

4.35 -0.998

0.798 -1.418

encoder output



Residual connection:

E    =     self_attention                  +          X

        =                                                   +                                                         =2.48 -2.08

2.48 -2.08

1.87 1.09

-1.68 0.67

4.35 -0.998

0.798 -1.418

encoder output

Residual connections help in training:
SA layer can establish a relationship with
input words without having to preserve all
the functions that led to it.



2. Decoder 

इधर (idhar) 1 0 0 0

चलो (chalo) 0 1 0 0

हम (hum) 0 0 1 0

<EOS> 0 0 0 1

Hindi vocabulary   = 𝐼4 = 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

-2.27 2.54

0.04 1.97

-0.77 -0.75

2.70 -1.34

𝐼4. =

इधर (idhar)

चलो (chalo)

हम (hum)

<EOS>

Word embedding: -2.27 2.54

0.04 1.97

-0.77 -0.75

2.70 -1.34



The decoder generates text iteratively, i.e., it predicts the next word based on the previous word(s). So unlike the
encoder, where the entire sentence was processed together ([ let’s, go ]), here we will process one word at a time.

We assume the first word to be <EOS> in Hindi (or any target language), since that would be the last word
of the (imaginary) previous sentence, preceding the first word of the current sentence.

-2.27 2.54

0.04 1.97

-0.77 -0.75

2.70 -1.34

इधर (idhar)

चलो (chalo)

हम (hum)

<EOS>

<EOS>        =   < 2.70,  -1.34 >
<EOS, 0>   =   <EOS>   +   <0>      =     < 2.70, -1.34 >   +   < 0,  1 >
    =   < 2.70, -0.34 >

recall positional embedding? we use the same
embeddings here.

0 1

-0.9 0.4

0

1





Decoder self-attention:

0.4 0.4

-0.3 0.1

0.4 -0.7

-0.4 -0.3

-1.1 -0.7

-0.4 1.3
W_q,sa  =                                                    W_k,sa =                                                     W_v,sa = 

<EOS, 0> . W_q,sa = Q_sa
<EOS, 0> . W_k,sa  = K_sa
<EOS, 0> . W_v,sa =  V_sa

decoder_self_attention     =     softmax( Q_sa . K_sa^T) . V_sa

                 =     < -2.834, -2.332 >





Residual network:

Y_sa         =        decoder_self_attention         +           <EOS, 0>

                   =       < -2.834, -2.332 >                      +           < 2.70, -0.34 >

                   =       < -0.134, -2.672 >





Decoder cross-attention:

We have now learnt the meaning of the current word w.r.t the other words in Hindi (through self attention)
But what does the current word mean w.r.t the English that was learnt by the encoder?

encoder output
K , V

decoder self-
attention
output

Y_saQ



Decoder cross-attention:

1.5 -0.3

0.3 -1.0

-1.1 0.3

-0.3 -0.8

1.1 0.6

-1.2 -0.5
W_q,ca  =                                                    W_k,ca =                                                     W_v,ca = 

Query from decoder self attention output:

Y_sa . W_q,ca     =     Q_ca      =     < -1.0026, 2.7122 >

Key and Value from encoder output:

E . W_k,ca     =      K_ca     =      

E . W_v,ca      =     V_ca     =   

-4.48 2.10

-0.45 1.37

5.98 3.11

2.58 1.19

decoder_cross_attention     =     softmax( Q_ca . K_ca^T ). V_ca        =        < 5.97, 3.10 >

4.35 -0.998

0.798 -1.418

Recall E, the encoder output?





Residual network:

Y_ca         =        decoder_cross_attention    +   Y_sa

                   =       < 5.97, 3.10 >                              +  < -0.134, -2.672 >

                   =       < 5.84, 0.43 >





Fully-connected layer

-0.6 0.8 -0.1 -1.0

-2.0 -0.9 -1.1 1.6
W  =                                                                                               bias   =    < -0.6, 1.4, -2.5, 0.5 >

pred                =    Y_ca . W               +            bias
  
       =    < -4.97 , 5.68 , -3.56 , -4.65 >

next_word    =   softmax( pred )

       =    < 2.4e-5 , 9.99e-1,  9.7e-5,  3.3e-5 >     =     < 0, 1, 0, 0 > (approx.)

चलो (chalo)



Now, चलो (chalo) enters the decoder, and the same decoder operations are repeated. 

Next word predicted is <EOS>
Translation finished.
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