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A. Contexi

Measurements from fluorescence microscopy are
noisy & cluttered [1]
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Data association is a combinatorially hard
problem [3]
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Hypothesis 7]2

B. Method
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Attention-based method (transformer [4])

sequences

Robust to increasing noise

Weakly-supervised inferences of molecular
dynamics for fluorescence imaging in

When MHT is optimal
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Mapping measurements to frajectories is an inverse
data association problem [2]
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Conventional methods (like MHT) are uniractable

p(Xt|Z1:¢) =P(Zt\Xt)/P(Xt\Xt—l)P(Xt—l|let—1)dX

aneH;P(ZdXt,775)17(77§|Xt)/P(thXt—l)p(Xt-—l\let—l)dX

(oﬂen, we don’t have
a priori information

difficult to account for the super-expon>ntial
Increase in hypotheses

Can LLMs be used for long-range sequence-dependencies & combinatorial complexity?

Experimental setup

Simulation of a simple system of 2 particles in 2 dimensions without
any false positives & increasing measurement noise following
standard Brownian motion

C. Main Results: Transformers are robust for long sequences but MHT remains optimal for short

Hint to hybridise?

measurement noise, w, in natural log scale measurement noise, w

While attention prolongs the noise-cliff, it
breaks the same way as MHT does

match its accuracy
Hypothesis: MHT would be optimal (and

hence, perform best) if it could easily
access the entire lookback window.

For small sequences, this is still feasible.
What happens then?
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Sequence length/lifetime, T

When MHT is indeed optimal, i.e., for
small sequences, attention is unable to
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