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Mapping measurements to states is an inverse problem of data-association
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Data-association is a combinatorially hard problem
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Conventional methods use an iterative estimator as a suboptimal solution

p(X:|Z1) = p(Ze]X0) f p(Xe X 1)p(Xi1|Zas1)dX

association prediction a priori



Conventional methods must prematurely prune hypotheses based on priors

P(Xe|Z1s) = p(Ze|X2) f p(Xe| X 1)p(Xy 1| Zre_1)dX

association prediction a priori
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Attention can be used to make decisions on both states & hypotheses
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A simple experimental setup for proof-of-concept
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Similarity between ground-truth and prediction is given by Jaccard coefficient

[llustration by Laura Neschen



Jaccard coefficient

Attention is robust to increasing noise in long sequences

(@) Known priors, lookback window = 1
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When Bayesian filtering is optimal, attention is suboptimal

Mishra, Roudot, 2024
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Attention is robust to increasing sequence length

Mishra, Roudot, 2024

Sequence length/lifetime, T
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Ongoing work: A frugal tracking strategy that uses attention to build global priors
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Application: Tracking particles for microscopy

+ diffraction
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Application: Tracking particles for microscopy
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Application: Tracking particles for microscopy
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Application: Stand on a moving cell

Microscopy images Tracking cells using Stabilised region of interest
of fruitfly embryo, the Bayesian-Attention Team Endotrack
C. Collinet, IBDM hybrid strategy Centuri Hackathon, 2024
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