Measuring intracellular dynamics in dense in vivo environments

through the combination of large language and stochastic modelling

Team Endotrack,
Centuri Hackathon 2024,
Claudio Collinet, IBDM

Piyush Mishra

Institut de Mathématiques de Marseille,

Institut Fresnel




Particle tracking is an inverse problem
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Bayesian filtering provides an iterative approach to track particles
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The decision of which hypotheses to eliminate is not trivial
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Learn particle-interactions instead of assuming them
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Learn particle-interactions instead of assuming them
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Learn particle-interactions instead of assuming them
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We tested a basic attention scheme for proof-of-concept
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Mishra, Roudot, Comparative study of
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We tested a basic attention scheme for proof-of-concept

Bayesian approach
Multiple hypothesis tracking (MHT)
Greedy association

Mishra, Roudot, EUSIPCO 2024
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Attention is robust to increasing measurement noise

1.0 10 4 +——1 |
\ |
0.9 1 N \
- - 084 ' '
= 4 = | '
k5 0.8 5 : : 1
[&] o ' '
= 0.7 o— ' '
8 061 s |
2 o051 B 044 b
Q O 1 I
8 0.4 1 8 : :
- transformer = 02 | [
037 ——  bayesian ' 8
02 v r — Y'Y S— —
n o
s 33 23 s REWR s 833 2 %3 " = R&8E
measurement noise in natural log scale, w measurement noise in natural log scale, w

Mishra, Roudot, EUSIPCO 2024



Bayesian filtering is optimal for small hypothesis sets
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Scaling up: split the problem into specialised tasks

- Proof of concept - Tracking specific architecture
- Only measurement noise - False positives and negatives
- No detection errors along with measurement noise
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- Proof of concept - Tracking specific architecture
- Only measurement noise - False positives and negatives
- No detection errors along with measurement noise

Mishra, Roudot, Attention-Bayesian Hybrid
Approach for Modular Multiple Particle
Tracking, 2025
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ABHA first prunes the hypothesis-set, then filters each set individually

Stage 1: . h: embedding h: embedding N: maximum
Zt t dimension dimension trajectory number
Attention assigns each detection to a class of —"—

potential trajectory —>
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Mishra, Roudot, 2025
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ABHA first prunes the hypothesis-set, then filters each set individually
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Once pruned, there is only one measurement to associate: Kalman filtering

p(x¢|Z1.4) o likelihood X prior
p(xf.lzl:t) X P(Zt\xt) X P(Xt|51:t—1)
-1 t t+1
P(X¢|Z1:4) p(Z4|x¢) X fp(xtlxt—l) P(X¢—1|Z1:4-1)dxs1
association motion modelling previous evidence

'N‘(Fﬁt—la Q) N(”t—la Et—l]

A J

N(Hy,R) N (i, 27)

py = Fpe
S = F%, ,F ! +Q

state extrapolate

23



Once pruned, there is only one measurement to associate: Kalman filtering
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Promising qualitative results on aggressively blinking detections
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Both qualitative & quantitative reduction of tracking artifacts by ABHA on virus
trafficking data

TGOSPA score (lower is better) captures:
- location errors

- missed & false detection error

- identity switches

- track fragmentation

TGOSPA=2.116 +- 0.094 TGOSPA =5.743 +-0.103

Mishra, Roudot, 2025
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Ongoing work: prove it small, then go big

Proof-of-concept for Proof-of-concept for
robustness of attention, hybridisation (ABHA),
Mishra, Roudot, 2024 Mishra, Roudot, 2025

A scaled tool to track a large
bulk of particles
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#® We track particles to understand sub-cellular dynamics
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We track particles to understand sub-cellular dynamics

Tracking is an inverse problem

Bayesian filtering is a powerful approximation

Hypothesis pruning remains a non-trivial concern

Attention learns inter-detection relationship

ABHA: a hybrid approach

A conservative yet precise tracker

Ongoing work: scaling for a large number of particles
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