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Particle tracking is an inverse problem
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Bayesian filtering provides an iterative approach to track particles
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The decision of which hypotheses to eliminate is not trivial



Learn particle-interactions instead of assuming them
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We tested a basic attention scheme for proof-of-concept

𝑦𝑡, 𝑝  = 𝑦𝑡−1,𝑝 + 𝜀𝑡, 𝑝 + 𝛿𝑝

𝜇

randomness with 
process noise

drift

𝑧𝑡, 𝑝  = 𝑦𝑡,𝑝 + 𝜔  𝑝

measurement noise

Mishra, Roudot, Comparative study of 
transformer robustness for multiple particle 
tracking without clutter, EUSIPCO 2024
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We tested a basic attention scheme for proof-of-concept

Bayesian approach
Multiple hypothesis tracking (MHT)
Greedy association

Transformer
Non-iterative learning & iterative 
prediction

Mishra, Roudot, EUSIPCO 2024
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Mishra, Roudot, EUSIPCO 2024

Attention is robust to increasing measurement noise
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Mishra, Roudot, EUSIPCO 2024

Bayesian filtering is optimal for small hypothesis sets
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Scaling up: split the problem into specialised tasks

- Proof of concept
- Only measurement noise
- No detection errors

- Tracking specific architecture
- False positives and negatives   
along with measurement noise

19



- Proof of concept
- Only measurement noise
- No detection errors

- Tracking specific architecture
- False positives and negatives   
along with measurement noise

Scaling up: split the problem into specialised tasks

Mishra, Roudot, Attention-Bayesian Hybrid 
Approach for Modular Multiple Particle 
Tracking, 2025 20



Mishra, Roudot, 2025

ABHA first prunes the hypothesis-set, then filters each set individually

Stage 1: 

Attention assigns each detection to a class of 
potential trajectory
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Stage 1: 

Attention assigns each detection to a class of 
potential trajectory

Stage 2:

Each class is isolated and filtered using the 
Bayesian approach

Mishra, Roudot, 2025

ABHA first prunes the hypothesis-set, then filters each set individually
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Once pruned, there is only one measurement to associate: Kalman filtering
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detections associated detections

predicted tracks ground truth

Promising qualitative results on aggressively blinking detections
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GT ABHA (Ours) MHT

TGOSPA score (lower is better) captures:
- location errors
- missed & false detection error
- identity switches
- track fragmentation

TGOSPA = 5.743 +- 0.103TGOSPA = 2.116 +- 0.094

Mishra, Roudot, 2025

Both qualitative & quantitative reduction of tracking artifacts by ABHA on virus 
trafficking data
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Ongoing work: prove it small, then go big

Proof-of-concept for 
robustness of attention,
Mishra, Roudot, 2024

Proof-of-concept for 
hybridisation (ABHA),
Mishra, Roudot, 2025

A scaled tool to track a large 
bulk of particles



We track particles to understand sub-cellular dynamics
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We track particles to understand sub-cellular dynamics

Tracking is an inverse problem

Bayesian filtering is a powerful approximation

Hypothesis pruning remains a non-trivial concern

Attention learns inter-detection relationship

ABHA: a hybrid approach

A conservative yet precise tracker

Ongoing work: scaling for a large number of particles
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Thank you ☺

Philippe Roudot

Jules Vanaret

Sophie Carneiro-Esteves

Elhamou Ali

Guillaume Hermitte

Laura Neschen
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