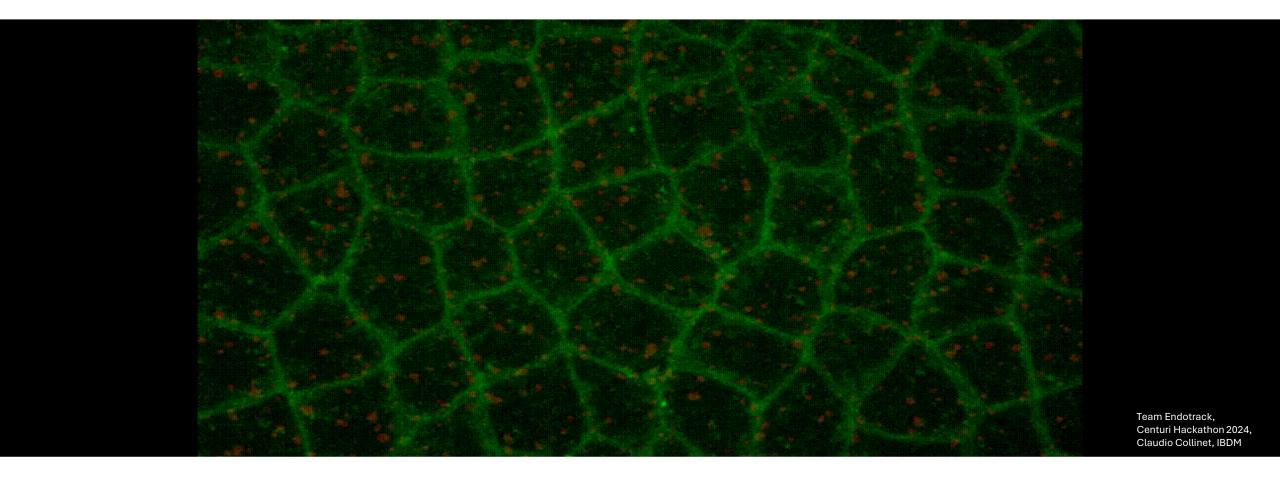
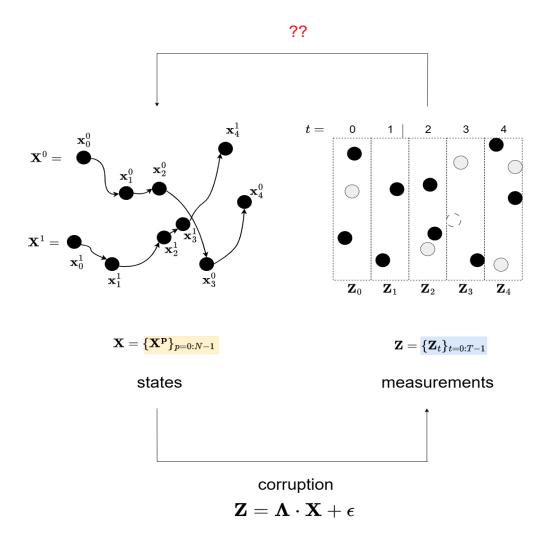
Measuring intracellular dynamics in dense in vivo environments through the combination of large language and stochastic modelling



Piyush Mishra
Institut de Mathématiques de Marseille,
Institut Fresnel

Particle tracking is an inverse problem



$$p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto$$
 likelihood $imes$ prior

$$p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto$$
 likelihood $imes$ prior $p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto$ $p(\mathbf{z}_t|\mathbf{x}_t)$ $imes$ $p(\mathbf{x}_t|\mathbf{z}_{1:t-1})$

$$p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto$$
 likelihood $imes$ prior $p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto$ $p(\mathbf{z}_t|\mathbf{x}_t)$ $imes$ $p(\mathbf{x}_t|\mathbf{z}_{1:t-1})$ $imes$ $p(\mathbf{x}_t|\mathbf{z}_{1:t-1}) \propto$ $p(\mathbf{z}_t|\mathbf{x}_t)$ $imes$ $p(\mathbf{z}_t|\mathbf{x}_t)$ $p(\mathbf{x}_t|\mathbf{z}_{1:t-1}) p(\mathbf{x}_{t-1}|\mathbf{z}_{1:t-1}) d\mathbf{x}_{t-1}$ association motion modelling previous evidence

$$p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto$$
 likelihood $imes$ prior $p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto$ $p(\mathbf{z}_t|\mathbf{x}_t)$ $imes$ $p(\mathbf{x}_t|\mathbf{z}_{1:t-1})$ $imes$ $p(\mathbf{x}_t|\mathbf{z}_{1:t-1}) \propto$ $p(\mathbf{z}_t|\mathbf{x}_t)$ $imes$ $p(\mathbf{x}_t|\mathbf{z}_{1:t-1}) p(\mathbf{x}_{t-1}|\mathbf{z}_{1:t-1}) d\mathbf{x}_{t-1}$ association $p(\mathbf{x}_t|\mathbf{x}_t) = \mathbf{v}(\mathbf{x}_t|\mathbf{x}_t) p(\mathbf{x}_t|\mathbf{x}_t) p(\mathbf{x}_t|\mathbf{x}_t) p(\mathbf{x}_t|\mathbf{x}_t) p(\mathbf{x}_t|\mathbf{x}_t)$

$$p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto$$
 likelihood $imes$ prior $p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto$ $p(\mathbf{z}_t|\mathbf{x}_t)$ $imes$ $p(\mathbf{x}_t|\mathbf{z}_{1:t-1})$ $imes$ $p(\mathbf{x}_t|\mathbf{z}_{1:t-1}) \propto$ $p(\mathbf{z}_t|\mathbf{x}_t)$ $imes$ $p(\mathbf{x}_t|\mathbf{z}_{1:t-1}) p(\mathbf{x}_{t-1}|\mathbf{z}_{1:t-1}) d\mathbf{x}_{t-1}$ association $p(\mathbf{x}_t|\mathbf{x}_{t-1}) p(\mathbf{x}_{t-1}|\mathbf{z}_{1:t-1}) d\mathbf{x}_{t-1}$ $p(\mathbf{x}_t|\mathbf{x}_{t-1}) p(\mathbf{x}_{t-1}|\mathbf{z}_{1:t-1}) d\mathbf{x}_{t-1}$ $p(\mathbf{x}_t|\mathbf{x}_t) p(\mathbf{x}_t|\mathbf{x}_t) p(\mathbf{x}_t|\mathbf{x}_t) p(\mathbf{x}_t|\mathbf{x}_t)$ $p(\mathbf{x}_t|\mathbf{x}_t) p(\mathbf{x}_t|\mathbf{x}_t) p(\mathbf{$

$$p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto \qquad \text{likelihood} \qquad \times \qquad \text{prior}$$

$$p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto \qquad p(\mathbf{z}_t|\mathbf{x}_t) \qquad \times \qquad p(\mathbf{x}_t|\mathbf{z}_{1:t-1})$$

$$p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto \qquad p(\mathbf{z}_t|\mathbf{x}_t) \qquad \times \qquad \int p(\mathbf{x}_t|\mathbf{x}_{t-1}) \ p(\mathbf{x}_{t-1}|\mathbf{z}_{1:t-1}) d\mathbf{x}_{t-1}$$
 association
$$p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto \qquad p(\mathbf{z}_t|\mathbf{x}_t) \qquad \times \qquad \int p(\mathbf{x}_t|\mathbf{x}_{t-1}) \ p(\mathbf{x}_{t-1}|\mathbf{z}_{1:t-1}) d\mathbf{x}_{t-1}$$

$$p(\mathbf{x}_t|\mathbf{x}_t) \sim \qquad p(\mathbf{x}_t|\mathbf{x}_t) \qquad \times \qquad p(\mathbf{x}_t|\mathbf{x}_{t-1}) \qquad p(\mathbf{x}_{t-1}|\mathbf{z}_{1:t-1}) d\mathbf{x}_{t-1}$$

$$p(\mathbf{x}_t|\mathbf{x}_t) \sim \qquad p(\mathbf{x}_t|\mathbf{x}_t) \qquad \times \qquad p(\mathbf{x$$

$$p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto \quad \text{likelihood} \quad \times \quad \text{prior}$$

$$p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto \quad p(\mathbf{z}_t|\mathbf{x}_t) \quad \times \quad p(\mathbf{x}_t|\mathbf{z}_{1:t-1})$$

$$p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto \quad p(\mathbf{z}_t|\mathbf{x}_t) \quad \times \quad \int p(\mathbf{x}_t|\mathbf{x}_{t-1}) \ p(\mathbf{x}_{t-1}|\mathbf{z}_{1:t-1}) d\mathbf{x}_{t-1}$$

$$\text{association} \quad \text{motion modelling} \quad \text{previous evidence}$$

$$\mathcal{N}(\mathbf{F}_{\mu_{t-1}}, \mathbf{Q}) \quad \mathcal{N}(\mu_{t-1}, \Sigma_{t-1})$$

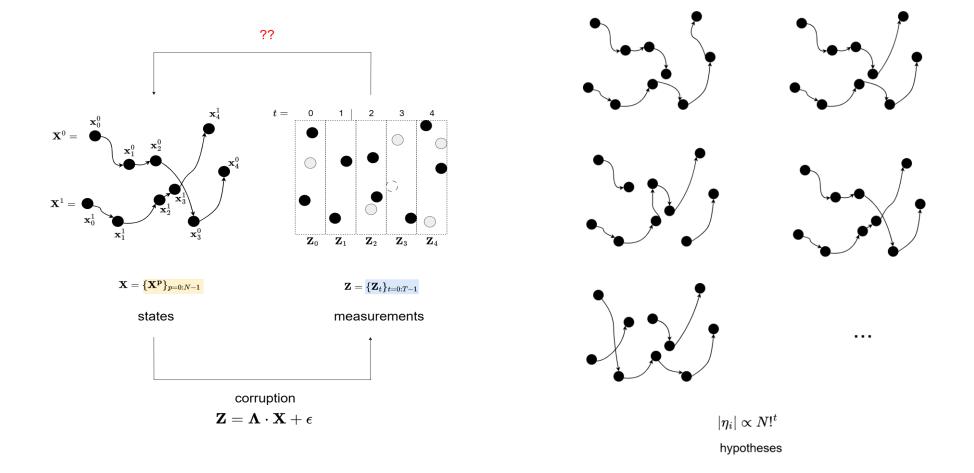
$$\sum_{\eta_t^t \in \mathbf{H}_t^t} p(\mathbf{z}_t|\mathbf{x}_t, \eta_t^t) p(\eta_t^t|\mathbf{x}_t) \quad \mathcal{N}(\mu_t^p, \Sigma_t^p)$$

$$p_t^p = \mathbf{F}_{\mu_{t-1}}$$

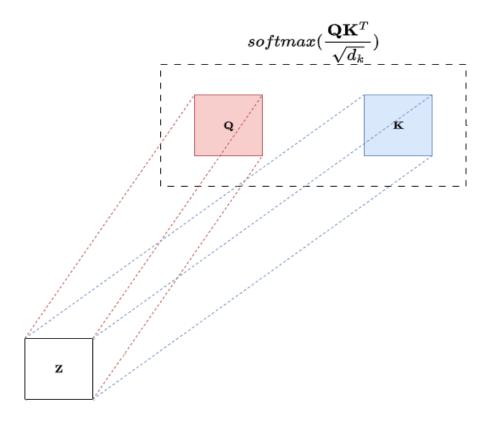
$$\sum_t^p = \mathbf{F} \Sigma_{t-1} \mathbf{F}^{-1} + \mathbf{Q}$$

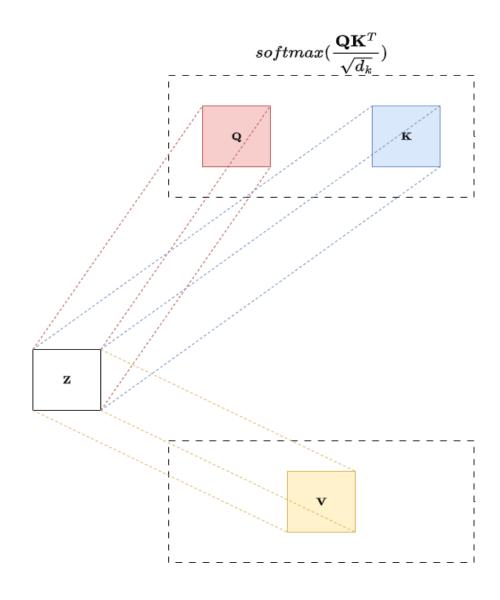
$$\text{state extrapolate}$$

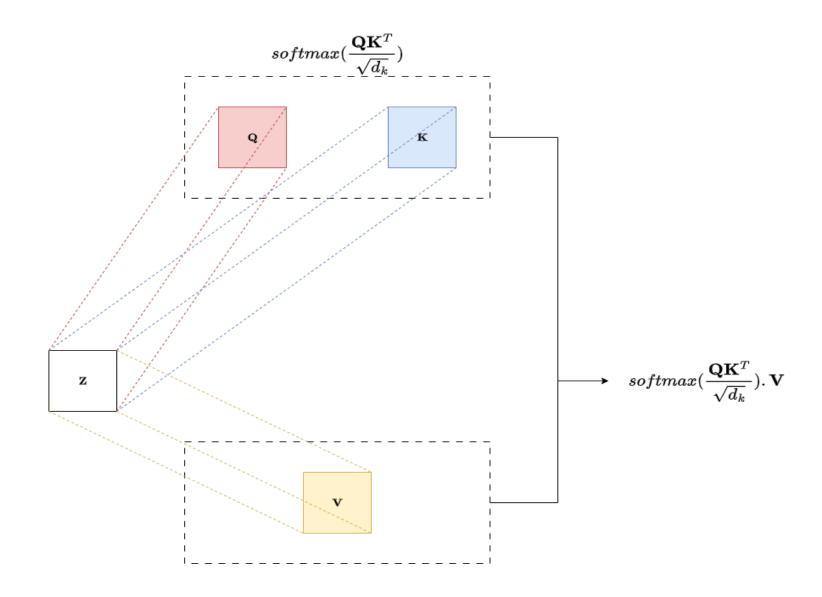
The decision of which hypotheses to eliminate is not trivial



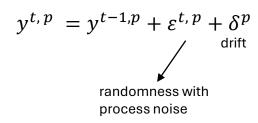
 \mathbf{z}





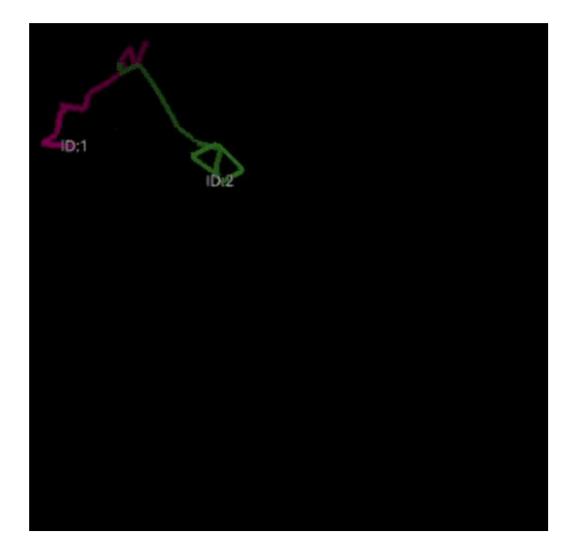


We tested a basic attention scheme for proof-of-concept



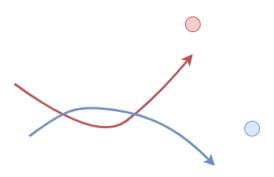
$$z^{t,p} = y^{t,p} + \omega^{p}$$

measurement noise



We tested a basic attention scheme for proof-of-concept

Bayesian approach
Multiple hypothesis tracking (MHT)
Greedy association

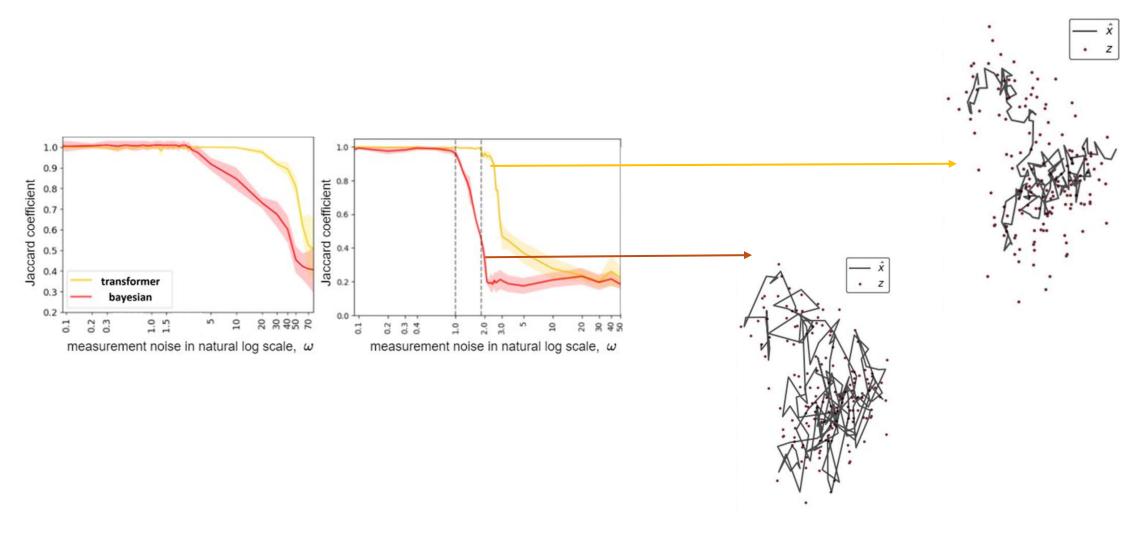


Transformer

Non-iterative learning & iterative prediction

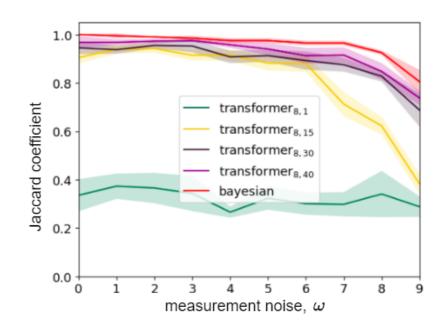


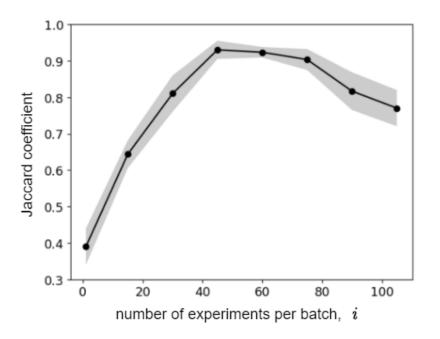
Attention is robust to increasing measurement noise



Mishra, Roudot, EUSIPCO 2024

Bayesian filtering is optimal for small hypothesis sets

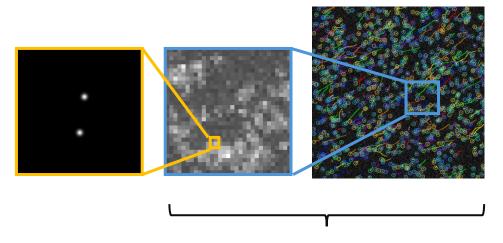




Mishra, Roudot, EUSIPCO 2024

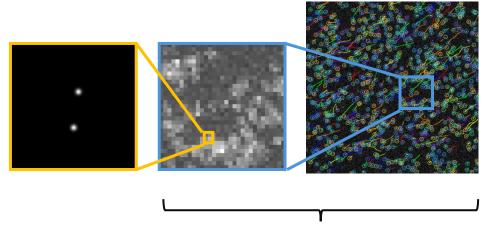
18

Scaling up: split the problem into specialised tasks

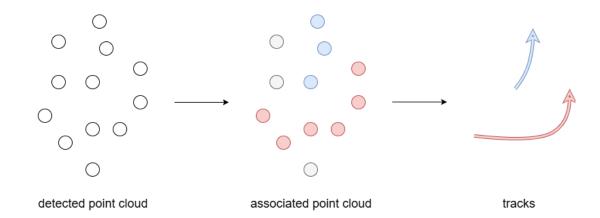


- Proof of concept
- Only measurement noise
- No detection errors
- Tracking specific architecture
- False positives and negatives along with measurement noise

Scaling up: split the problem into specialised tasks



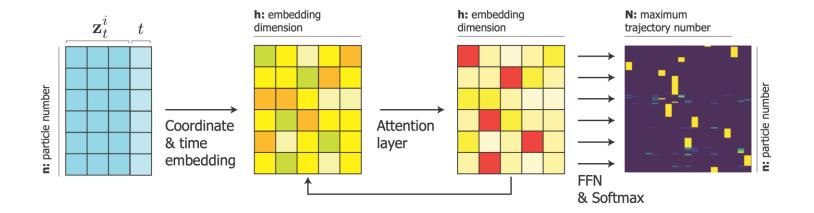
- Proof of concept
- Only measurement noise
- No detection errors
- Tracking specific architecture
- False positives and negatives along with measurement noise



ABHA first prunes the hypothesis-set, then filters each set individually

Stage 1:

Attention assigns each detection to a class of potential trajectory



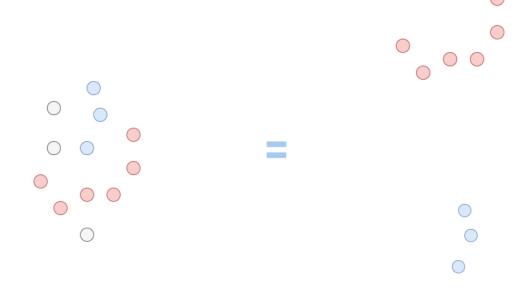
ABHA first prunes the hypothesis-set, then filters each set individually

Stage 1:

Attention assigns each detection to a class of potential trajectory

Stage 2:

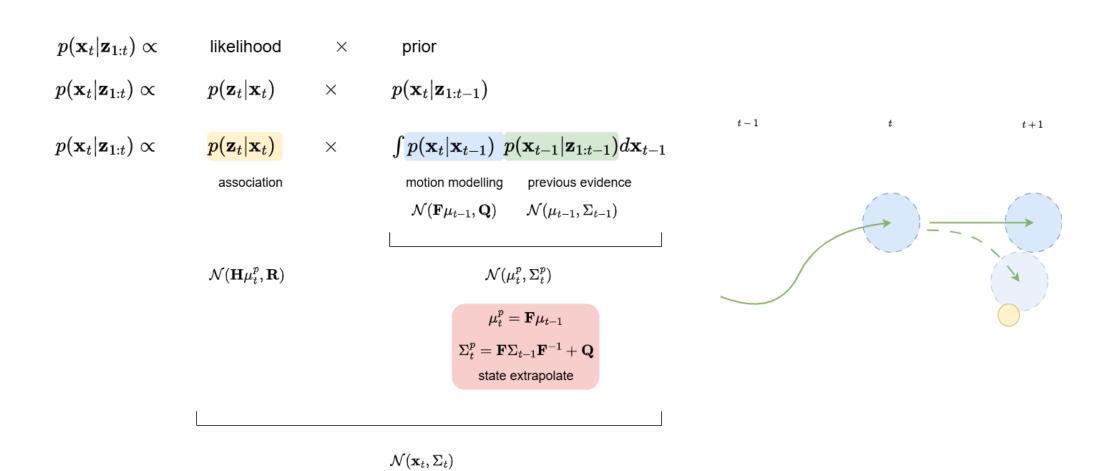
Each class is isolated and filtered using the Bayesian approach



Once pruned, there is only one measurement to associate: Kalman filtering

$$\begin{array}{llll} p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto & \text{likelihood} & \times & \text{prior} \\ \\ p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto & p(\mathbf{z}_t|\mathbf{x}_t) & \times & p(\mathbf{x}_t|\mathbf{z}_{1:t-1}) \\ \\ p(\mathbf{x}_t|\mathbf{z}_{1:t}) \propto & p(\mathbf{z}_t|\mathbf{x}_t) & \times & \int p(\mathbf{x}_t|\mathbf{x}_{t-1}) \ p(\mathbf{x}_{t-1}|\mathbf{z}_{1:t-1}) d\mathbf{x}_{t-1} \\ \\ & & \text{association} & & \text{motion modelling} & \text{previous evidence} \\ \\ \mathcal{N}(\mathbf{F}\mu_{t-1},\mathbf{Q}) & \mathcal{N}(\mu_{t-1},\Sigma_{t-1}) \\ \\ & & \mathcal{N}(\mu_t^p,\Sigma_t^p) \\ \\ & & \mathcal{N}_t^p = \mathbf{F}\mu_{t-1} \\ \\ & & \Sigma_t^p = \mathbf{F}\Sigma_{t-1}\mathbf{F}^{-1} + \mathbf{Q} \\ \\ & \text{state extrapolate} \\ \end{array}$$

Once pruned, there is only one measurement to associate: Kalman filtering

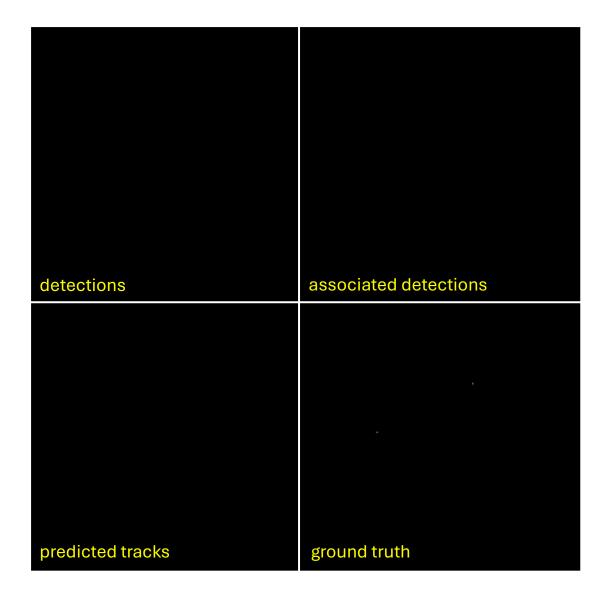


 $\mathbf{x}_t = \mu_t^p + \mathbf{K}_t(\mathbf{z}_t - \mathbf{H}\mu_t^p)$

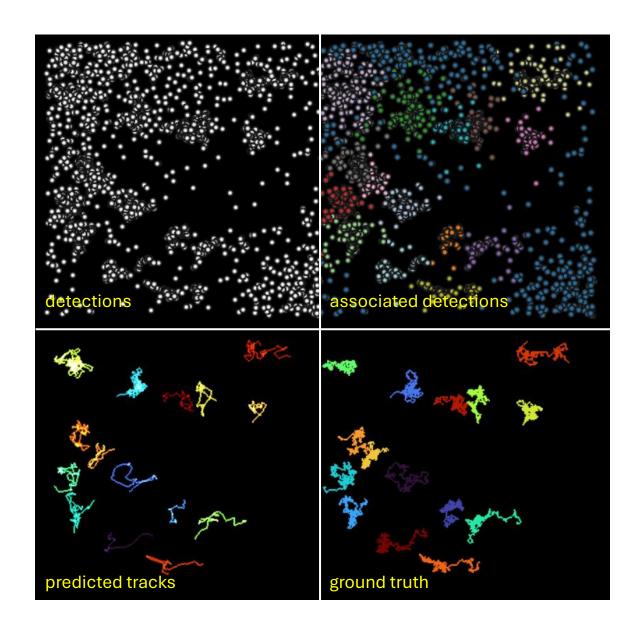
 $\Sigma_t = (\mathbf{I} - \mathbf{K}_t \mathbf{H}) \Sigma_t^p$

state update

Promising qualitative results on aggressively blinking detections



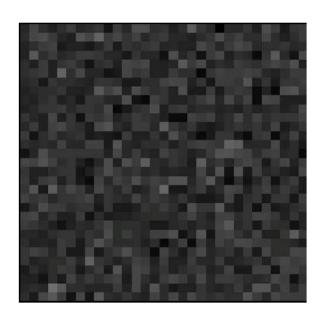
Promising qualitative results on aggressively blinking detections

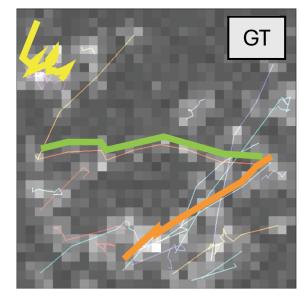


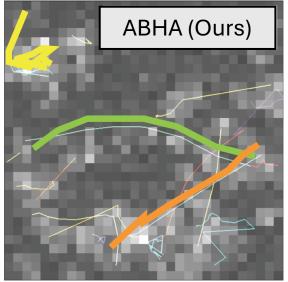
Both qualitative & quantitative reduction of tracking artifacts by ABHA on virus trafficking data

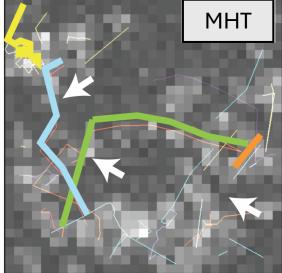
TGOSPA score (lower is better) captures:

- location errors
- missed & false detection error
- identity switches
- track fragmentation





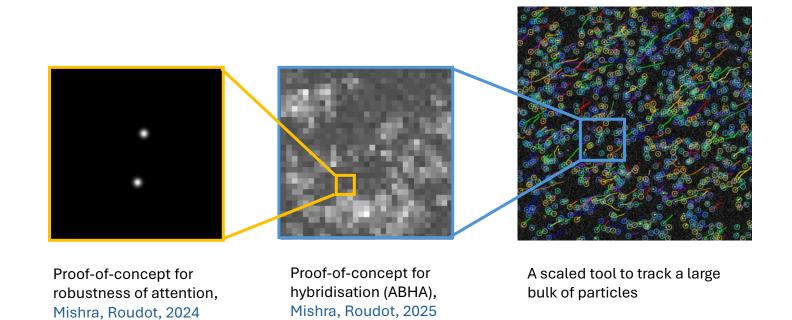




TGOSPA = 2.116 +- 0.094

TGOSPA = 5.743 +- 0.103

Ongoing work: prove it small, then go big



We track particles to understand sub-cellular dynamics

• We track particles to understand sub-cellular dynamics

Tracking is an inverse problem

- We track particles to understand sub-cellular dynamics
- Tracking is an inverse problem
- Bayesian filtering is a powerful approximation

- We track particles to understand sub-cellular dynamics
- Tracking is an inverse problem
 - Bayesian filtering is a powerful approximation
- Hypothesis pruning remains a non-trivial concern

- We track particles to understand sub-cellular dynamics
- Tracking is an inverse problem
- Bayesian filtering is a powerful approximation
- Hypothesis pruning remains a non-trivial concern
- Attention learns inter-detection relationship

- We track particles to understand sub-cellular dynamics
- Tracking is an inverse problem
- Bayesian filtering is a powerful approximation
- Hypothesis pruning remains a non-trivial concern
- Attention learns inter-detection relationship
- ABHA: a hybrid approach

We track particles to understand sub-cellular dynamics

Tracking is an inverse problem

Bayesian filtering is a powerful approximation

Hypothesis pruning remains a non-trivial concern

Attention learns inter-detection relationship

ABHA: a hybrid approach

A conservative yet precise tracker

- We track particles to understand sub-cellular dynamics
- Tracking is an inverse problem
- Bayesian filtering is a powerful approximation
- Hypothesis pruning remains a non-trivial concern
- Attention learns inter-detection relationship
- ABHA: a hybrid approach
- A conservative yet precise tracker
- Ongoing work: scaling for a large number of particles

Thank you ☺

Philippe Roudot

Jules Vanaret

Sophie Carneiro-Esteves

Elhamou Ali

Guillaume Hermitte

Laura Neschen

